MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Computer Science and Artificial Intelligence Lab (CSAIL)
  • Artificial Intelligence Lab Publications
  • AI Memos (1959 - 2004)
  • View Item
  • DSpace@MIT Home
  • Computer Science and Artificial Intelligence Lab (CSAIL)
  • Artificial Intelligence Lab Publications
  • AI Memos (1959 - 2004)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Theoretical Analysis of the Electrical Properties of a X-Cell in the Cat's LGN

Author(s)
Koch, Christof
Thumbnail
DownloadAIM-787.ps (7.653Mb)
Additional downloads
AIM-787.pdf (6.013Mb)
Metadata
Show full item record
Abstract
Electron microscope studies of relay cells in the lateral geniculate nucleus of the CAT have shown that the retinal input of X-cells is associated with a special synaptic circuitry, termed the spine-triad complex. The retinal afferents make an asymmetrical synapse with both a dendritic appendage of the X-cell and a geniculate interneuron. The interneuron contacts in turn the same dendritic appendage with a symmetrical synaptic profile. The retinal input to geniculate Y-cells is predominately found on dendritic shafts without any triadic arrangement. We explore the integrative properties of X- and Y-cells resulting from this striking dichotomy in synaptic architecture. The basis of our analysis is the solution of the cable equation for a branched dendritic tree with a known somatic input resistance. Under the assumption that the geniculate interneuron mediates a shunting inhibition, activation of the interneuron reduces very efficiently the excitatory post-synaptic potential induced by the retinal afferent without affecting the electrical activity in the rest of the cell. Therefore, the spine-triad circuit implements the analogy of an AND-NOT gate, unique to the X-system. Functionally, this corresponds to a presynaptic, feed-forward type of inhibition of the optic tract terminal. Since Y-cells lack this structure, inhibition acts globally, reducing the general electrical activity of the cell. We propose that geniculate interneurons gate the flow of visual information into the X-system as a function of the behavioral state of the animal, enhancing the center-surround antagonism and possibly mediating reciprocal lateral inhibition, eye-movement related suppression and selective visual attention.
Date issued
1984-03-01
URI
http://hdl.handle.net/1721.1/6410
Other identifiers
AIM-787
Series/Report no.
AIM-787

Collections
  • AI Memos (1959 - 2004)

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.