MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Computer Science and Artificial Intelligence Lab (CSAIL)
  • Artificial Intelligence Lab Publications
  • AI Memos (1959 - 2004)
  • View Item
  • DSpace@MIT Home
  • Computer Science and Artificial Intelligence Lab (CSAIL)
  • Artificial Intelligence Lab Publications
  • AI Memos (1959 - 2004)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The Optical Flow of Planar Surfaces

Author(s)
Ullman, Shimon
Thumbnail
DownloadAIM-870.ps (1.939Mb)
Additional downloads
AIM-870.pdf (785.5Kb)
Metadata
Show full item record
Abstract
The human visual system can recover the 3D shape of moving objects on the basis of motion information alone. Computational studies of this capacity have considered primarily non-planar rigid objects. With respect to moving planar surfaces, previous studies by Hay (1966), Tsai and Huang (1981), Longuet-Higgins (1984), have shown that the planar velocity field has in general a two-fold ambiguity: there are two different planes engaged in different motions that can induce the same velocity field. The current analysis extends the analysis of the planar velocity field in four directions: (1) the use of flow parameters of the type suggested by Koenderink and van Doorn (1975), (2) the exclusion of confusable non-planar solutions, (3) a new proof and a new method for computing the 3D motion and surface orientation, and (4) a comparison with the information available in orthographic velocity fields, which is important for determining the stability of the 3D recovery process.
Date issued
1985-12-01
URI
http://hdl.handle.net/1721.1/6437
Other identifiers
AIM-870
Series/Report no.
AIM-870

Collections
  • AI Memos (1959 - 2004)

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.