MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Nonparametric Bayesian Texture Learning and Synthesis

Author(s)
Zhu, Long; Chen, Yuanhao; Freeman, William T.; Torralba, Antonio
Thumbnail
DownloadTorralba_Nonparametric Bayesian.pdf (2.947Mb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike 3.0 http://creativecommons.org/licenses/by-nc-sa/3.0/
Metadata
Show full item record
Abstract
We present a nonparametric Bayesian method for texture learning and synthesis. A texture image is represented by a 2D Hidden Markov Model (2DHMM) where the hidden states correspond to the cluster labeling of textons and the transition matrix encodes their spatial layout (the compatibility between adjacent textons). The 2DHMM is coupled with the Hierarchical Dirichlet process (HDP) which allows the number of textons and the complexity of transition matrix grow as the input texture becomes irregular. The HDP makes use of Dirichlet process prior which favors regular textures by penalizing the model complexity. This framework (HDP-2DHMM) learns the texton vocabulary and their spatial layout jointly and automatically. The HDP-2DHMM results in a compact representation of textures which allows fast texture synthesis with comparable rendering quality over the state-of-the-art patch-based rendering methods. We also show that the HDP- 2DHMM can be applied to perform image segmentation and synthesis. The preliminary results suggest that HDP-2DHMM is generally useful for further applications in low-level vision problems.
Date issued
2009-12
URI
http://hdl.handle.net/1721.1/64454
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory; Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
Papers of the Twenty-Third Annual Conference on Neural Information Processing Systems, NIPS 2009
Publisher
Neural Information Processing Systems Foundation
Citation
Zhu, Long (Leo) et al. "Nonparametric Bayesian Texture Learning and Synthesis." in Accepted Papers of the Twenty-Third Annual Conference on Neural Information Processing Systems, NIPS 2009, December 7-10, 2009, Hyatt Regency, Vancouver, BC, Canada.
Version: Author's final manuscript

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.