MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Computer Science and Artificial Intelligence Lab (CSAIL)
  • Artificial Intelligence Lab Publications
  • AI Memos (1959 - 2004)
  • View Item
  • DSpace@MIT Home
  • Computer Science and Artificial Intelligence Lab (CSAIL)
  • Artificial Intelligence Lab Publications
  • AI Memos (1959 - 2004)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Computational Complexity of Current GPSG Theory

Author(s)
Ristad, Eric Sven
Thumbnail
DownloadAIM-894.ps (2.738Mb)
Additional downloads
AIM-894.pdf (1.090Mb)
Metadata
Show full item record
Abstract
An important goal of computational linguistics has been to use linguistic theory to guide the construction of computationally efficient real-world natural language processing systems. At first glance, the entirely new generalized phrase structure grammar (GPSG) theory of Gazdar, Klein, Pullum, and Sag (1985) appears to be a blessing on two counts. First, their precise formal system and the broad empirical coverage of their published English grammar might be a direct guide for a transparent parser design and implementation. Second, since GPSG has weak context-free generative power and context-free languages can be parsed in O(n3) by a wide range of algorithms, GPSG parsers would appear to run in polynomial time. This widely-assumed GPSG "efficient parsbility" result is misleading: here we prove that the universal recognition problem for the new GPSG theory is exponentially-polynomial time hard, and assuredly intractable. The paper pinpoints sources of intractability (e.g. metarules and syntactic features in the GPSG formal system and concludes with some linguistically and computationally motivated restrictions on GPSG.
Date issued
1986-04-01
URI
http://hdl.handle.net/1721.1/6446
Other identifiers
AIM-894
Series/Report no.
AIM-894

Collections
  • AI Memos (1959 - 2004)

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.