MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Some analytic aspects of Vafa-Witten twisted N̳ = 4 supersymmetric Yang-Millseory theory

Author(s)
Mares, Bernard A., Jr. (Bernard Allen)
Thumbnail
DownloadFull printable version (1.675Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Mathematics.
Advisor
Tomasz S.Mrowka.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Given an oriented Riemannian four-manifold equipped with a principal bundle, we investigate the moduli spaceMVW of solutions to the Vafa-Witten equations. These equations arise from a twist of N = 4 supersymmetric Yang-Mills theory. Physicists believe that this theory has a well-defined partition function, which depends on a single complex parameter. On one hand, the S-duality conjecture predicts that this partition function is a modular form. On the other hand, the Fourier coefficients of the partition function are supposed to be the "Euler characteristics" of various moduli spacesMASD of compactified anti-self-dual instantons. For several algebraic surfaces, these Euler characteristics were verified to be modular forms. Except in certain special cases, it's unclear how to precisely define the partition function. If there is a mathematically sensible definition of the partition function, we expect it to arise as a gauge-theoretic invariant of the moduli spaces MVW. The aim of this thesis is to initiate the analysis necessary to define such invariants. We establish various properties, computations, and estimates for the Vafa-Witten equations. In particular, we give a partial Uhlenbeck compactification of the moduli space.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mathematics, 2010.
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
In title on title page, double underscored "N" appears as upper case script. Cataloged from student submitted PDF version of thesis.
 
Includes bibliographical references (p. 118-121).
 
Date issued
2010
URI
http://hdl.handle.net/1721.1/64488
Department
Massachusetts Institute of Technology. Department of Mathematics
Publisher
Massachusetts Institute of Technology
Keywords
Mathematics.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.