dc.contributor.advisor | John T Germaine. | en_US |
dc.contributor.author | Johnson, Sean (Sean Michael) | en_US |
dc.contributor.other | Massachusetts Institute of Technology. Dept. of Civil and Environmental Engineering. | en_US |
dc.date.accessioned | 2011-06-20T15:53:32Z | |
dc.date.available | 2011-06-20T15:53:32Z | |
dc.date.copyright | 2011 | en_US |
dc.date.issued | 2011 | en_US |
dc.identifier.uri | http://hdl.handle.net/1721.1/64573 | |
dc.description | Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering, 2011. | en_US |
dc.description | Cataloged from PDF version of thesis. | en_US |
dc.description | Includes bibliographical references (p. 253-255). | en_US |
dc.description.abstract | Finite Element Methods hold promise for modeling the behavior of an unsaturated soil specimen subjected to bender element agitation. The immediate objective of this research project is to reproduce a bender element test using Abaqus Finite Element Software assuming elastic and isotropic conditions. Extensive compressions were made of bender element testing of unsaturated Ticino Sand specimens uniaxially compressed and the Abaqus Finite Element Method program simulation. The research determined that the mesh resolution of a numerical analysis are optimal at a resolution of a twentieth of the shear wavelength and the integration time step has a negligible effect on the observed wave velocity. Moreover, it is possible to reproduce an uniaxially stressed bender element experiments of unsaturated Ticino sand in an Abaqus Finite Element Method program with relatively minimal error of the body wave velocity measurements if the source receiver distance is beyond two shear wavelengths and the reflected signals from the boundaries are suppressed. | en_US |
dc.description.statementofresponsibility | by Sean Johnson. | en_US |
dc.format.extent | 255 p. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Massachusetts Institute of Technology | en_US |
dc.rights | M.I.T. theses are protected by
copyright. They may be viewed from this source for any purpose, but
reproduction or distribution in any format is prohibited without written
permission. See provided URL for inquiries about permission. | en_US |
dc.rights.uri | http://dspace.mit.edu/handle/1721.1/7582 | en_US |
dc.subject | Civil and Environmental Engineering. | en_US |
dc.title | Modeling a bender element test using Abaqus Finite Element Program | en_US |
dc.type | Thesis | en_US |
dc.description.degree | S.M. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Civil and Environmental Engineering | |
dc.identifier.oclc | 727033288 | en_US |