Show simple item record

dc.contributor.advisorMary C. Boyce.en_US
dc.contributor.authorEggenspieler, Damienen_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Mechanical Engineering.en_US
dc.date.accessioned2011-06-20T15:57:39Z
dc.date.available2011-06-20T15:57:39Z
dc.date.copyright2010en_US
dc.date.issued2010en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/64596
dc.descriptionThesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2010.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references.en_US
dc.description.abstractAccess to drinking water is a growing issue and one of the key challenging of the twenty first century. The rapid depletion of current supply sources (aquifers, rivers, lake...) urges to find solutions, especially cost and energy efficient processes to desalinate seawater. Reverse osmosis is a membrane process for purification of seawater, invented in 1940's, which has evolved ever since, to become nowadays the most efficient process for desalination. We discuss the shortcomings of this technology, and identify bio-fouling to be the main cause of irreversibility (thus costs) in this process. After observation of solutions developed by Nature to deter bio-fouling (especially for marine species), surface micro-topography and chemistry have been identified as the two effective anti-fouling strategies. We introduce a brand new technology to create micro- and nano-patterned surfaces that is compatible with a wide variety of chemical compounds. A proof of concept is introduced with the first prototypes of wrinkled surfaces created with Initiated Chemical Vapor Deposition; Stiff polymeric coatings form wrinkles when deposited on pre-stretched soft elastomeric substrates. We are showing, both theoretically and experimentally, that the characteristics of these wrinkles can be tuned very easily. Mimicking Nature requires creating more complicated micro-topographies than the sinusoid-like pattern obtained with uniform coatings and substrates. We are showing with a numerical model that local stiffening of the substrate can be used to direct and control the buckling of the coating. In order to gain the full control of this design strategy, an inverse method is needed to establish how to treat the substrate in order to obtain a desired micro-topography. We set up the foundations of this inverse mechanical model, and develop an algorithm for a simple case.en_US
dc.description.statementofresponsibilityby Damien Eggenspieler.en_US
dc.format.extent195 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMechanical Engineering.en_US
dc.titleNew paradigm to design micro and nano-patterned membranesen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineering
dc.identifier.oclc727065477en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record