MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Risk stratification of cardiovascular patients using a novel classification tree induction algorithm with non-symmetric entropy measures

Author(s)
Singh, Anima, Ph. D. Massachusetts Institute of Technology
Thumbnail
DownloadFull printable version (6.141Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
John V. Guttag.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Risk stratification allows clinicians to choose treatments consistent with a patient's risk profile. Risk stratification models that integrate information from several risk attributes can aid clinical decision making. One of the technical challenges in developing risk stratification models from medical data is the class imbalance problem. Typically the number of patients that experience a serious medical event is a small subset of the entire population. The goal of my thesis work is to develop automated tools to build risk stratification models that can handle unbalanced datasets and improve risk stratification. We propose a novel classification tree induction algorithm that uses non-symmetric entropy measures to construct classification trees. We apply our methods to the application of identifying patients at high risk of cardiovascular mortality. We tested our approach on a set of 4200 patients who had recently suffered from a non-ST-elevation acute coronary syndrome. When compared to classification tree models generated using other measures proposed in the literature, the tree models constructed using non-symmetric entropy had higher recall and precision. Our models significantly outperformed models generated using logistic regression - a standard method of developing multivariate risk stratification models in the literature.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2011.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 95-100).
 
Date issued
2011
URI
http://hdl.handle.net/1721.1/64601
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.