MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The moduli space of hypersurfaces whose singular locus has high dimension

Author(s)
Slavov, Kaloyan (Kaloyan Stefanov)
Thumbnail
DownloadFull printable version (2.346Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Mathematics.
Advisor
Bjorn Poonen.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Fix integers n and b with n =/> 3 and 1 =/< b < n - 1. Let k be an algebraically closed field. Consider the moduli space X of hypersurfaces in P" of fixed degree I whose singular locus is at least b-dimensional. We prove that for large 1, X has a unique irreducible component of maximal dimension, consisting of the hypersurfaces singular along a linear b-dimensional subspace of P".
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mathematics, 2011.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 75).
 
Date issued
2011
URI
http://hdl.handle.net/1721.1/64605
Department
Massachusetts Institute of Technology. Department of Mathematics
Publisher
Massachusetts Institute of Technology
Keywords
Mathematics.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.