Show simple item record

dc.contributor.advisorRandolph Kirchain.en_US
dc.contributor.authorLindsey, Johnathan Jake, IIIen_US
dc.contributor.otherMassachusetts Institute of Technology. Technology and Policy Program.en_US
dc.date.accessioned2011-08-18T19:19:24Z
dc.date.available2011-08-18T19:19:24Z
dc.date.copyright2010en_US
dc.date.issued2010en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/65329
dc.descriptionThesis (S.M. in Technology and Policy)--Massachusetts Institute of Technology, Engineering Systems Division, 2010.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 134-139).en_US
dc.description.abstractOver the past decade, the demand for digital information has increased dramatically with the rising use of the Internet and various types of multimedia data - text, audio, graphics, video, and voice. As a consequence, the technologies that connect and transport data have become critically important. Available interconnect technologies are broadly organized into two categories: electrical and optical. Although many digital systems use electrical interconnects, optical interconnects are becoming an attractive alternative as electrical connection has become increasingly difficult in terms of cost and performance. However, the transition from electrical to optical interconnects across multiple markets could still be hampered by its higher cost relative to interconnects in the mid-term. Thus, this work seeks to shed light on the following question: "What additional characteristics are useful to evaluate the attractiveness of optical interconnects in emerging markets?" This thesis seeks to explore and answer this question in three parts. The first part of the thesis attempts to gauge the opportunities and barriers to optical interconnect adoption in emerging markets through an analysis of first phase interviews with professionals working in the datacom, automobile, consumer hand-held device industries. Initial review of the response set shows that of the five initial emerging markets for optical interconnect, datacom, specifically high-performance computing (HPC), has the greatest potential for increased optical interconnect adoption in the near future. To further explore the environment for optical interconnects in the HPC, a second, more detailed questionnaire was distributed to a limited number of interviewees. In response to this interview, some respondents noted that several metrics other than cost and performance, particularly power consumption, as being "very important" when deciding which technology to adopt. The second part of the thesis is primarily concerned with investigating further the influence that power and performance concerns have on optical interconnect adoption in HPC data centers. Specifically, this part of the thesis seeks to explore whether power concerns in data centers could lead to increased adoption of optical interconnects. To that end, a cost model of an HPC data center has been developed to identify the possible economic impacts that the adoption of optical interconnect technologies would have in a power-driven scenario. The third part of this thesis presents a set of policy recommendations based on the results from the data center cost model.en_US
dc.description.statementofresponsibilityby Johnathan Jake Lindsey III.en_US
dc.format.extent139 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectEngineering Systems Division.en_US
dc.subjectTechnology and Policy Program.en_US
dc.titleCharacterizing opportunities for short reach optical interconnect adoption : a market survey and total cost of ownership model approachen_US
dc.typeThesisen_US
dc.description.degreeS.M.in Technology and Policyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Engineering Systems Division
dc.identifier.oclc746088997en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record