MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Physics
  • Physics - Bachelor's degree
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Physics
  • Physics - Bachelor's degree
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Novel approaches to Newtonian noise suppression in interferometric gravitational wave detection

Author(s)
Hunter-Jones, Nicholas R
Thumbnail
DownloadFull printable version (4.861Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Physics.
Advisor
Nergis Mavalvala.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
The Laser Interferometer Gravitational-wave Observatory (LIGO) attempts to detect ripples in the curvature of spacetime using two large scale interferometers. These detectors are several kilometer long Michelson interferometers with Fabry-Perot cavities between two silica test masses in each arm. Given Earth's proximity to various astrophysical phenomena LIGO must be sensitive to relative displacements of 1018 m and thus requires multiple levels of noise reduction to ensure the isolation of the interferometer components from numerous sources of noise. A substantial contributor to the Advanced LIGO noise in the 1-10 Hz range is Newtonian (or gravity gradient) noise which arises from local fluctuations in the Earth's gravitational field. Density fluctuations from seismic activity as well as acoustic and turbulent phenomenon in the Earth's atmosphere both contribute to slight variations in the local value of g. Given the direct coupling of gravitational fields to mass the LIGO test masses cannot be shielded from this noise. In an attempt to characterize and reduce Newtonian noise in interferometric gravitational wave detectors we investigate seismic and atmospheric contributions to the noise and consider the effect of submerging a gravitational wave detector.
Description
Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Physics, 2011.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 63-65).
 
Date issued
2011
URI
http://hdl.handle.net/1721.1/65529
Department
Massachusetts Institute of Technology. Dept. of Physics.
Publisher
Massachusetts Institute of Technology
Keywords
Physics.

Collections
  • Physics - Bachelor's degree
  • Physics - Bachelor's degree

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.