dc.contributor.advisor | Terry Knight. | en_US |
dc.contributor.author | El-Zanfaly, Dina Ezz ElDin | en_US |
dc.contributor.other | Massachusetts Institute of Technology. Dept. of Architecture. | en_US |
dc.date.accessioned | 2011-08-30T15:48:40Z | |
dc.date.available | 2011-08-30T15:48:40Z | |
dc.date.copyright | 2011 | en_US |
dc.date.issued | 2011 | en_US |
dc.identifier.uri | http://hdl.handle.net/1721.1/65545 | |
dc.description | Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Architecture, 2011. | en_US |
dc.description | Cataloged from PDF version of thesis. | en_US |
dc.description | Includes bibliographical references (p. 69-73). | en_US |
dc.description.abstract | This thesis proposes guidelines for designing kinetic architectural structures, in which rules based on shape grammars, are used for motion capturing and design. There is an increasing demand for adaptive architecture that reconfigures itself physically to meet functional or climatic changes. These guidelines provide a way for the architect to describe and design novel kinetic structures based on s/he already has to meet required physical reconfigurations in these structures. Based on Shape Grammars, the rule A -> t(A) is introduced as a design guideline for designing kinetic architectural structures. (A) means here an Active Shape, that is a physical shape with motion observed or created by the designer. The Active Shape (A) could be composed from one physical component or several physical components together. t(A) means a new Active Shape produced by applying one or more transformations t on the original Active Shape to produce a novel motion. These transformations could be (1) a transformation of the arrangement of the components of the Active Shape, (2) a transformation of the motion control means between the components of the Active Shape, such as actuators, hinges and linkages, (3) a transformation of the geometry of the components of the Active Shape and any other applicable transformations such as a transformation in the materiality of the components of Active Shape (A). In order to test the abovementioned guidelines; two design experiments were set up, (1) a workshop with a group of students and (2) a self-study. The workshop consisted of four stages: two design stages and two reporting stages after each design stage. The participants were provided with samples of Active Shapes (A), and they were asked n the first stage to choose one active shape with two arrangements of its components, and design with this active shape a kinetic structure. After reporting what he designed, each participant was then asked to take a kinetic structure from the other participants and apply a transformation on the active shape of this structure, and then report what s/he has done. The self-study consisted of 2 projects designed by the author. | en_US |
dc.description.statementofresponsibility | by Dina E. El-Zanfaly. | en_US |
dc.format.extent | 73 p. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Massachusetts Institute of Technology | en_US |
dc.rights | M.I.T. theses are protected by
copyright. They may be viewed from this source for any purpose, but
reproduction or distribution in any format is prohibited without written
permission. See provided URL for inquiries about permission. | en_US |
dc.rights.uri | http://dspace.mit.edu/handle/1721.1/7582 | en_US |
dc.subject | Architecture. | en_US |
dc.title | Active shapes : introducing guidelines for designing kinetic architectural structures | en_US |
dc.title.alternative | Introducing guidelines for designing kinetic architectural structures | en_US |
dc.type | Thesis | en_US |
dc.description.degree | S.M. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Architecture | |
dc.identifier.oclc | 747033684 | en_US |