MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Exploration of parameters for the continuous blending of pharmaceutical powders

Author(s)
Lin, Ben Chien Pang
Thumbnail
DownloadFull printable version (17.10Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Chemical Engineering.
Advisor
Charles L. Cooney.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
The transition from traditional batch blending to continuous blending is an opportunity for the pharmaceutical industry to reduce costs and improve quality control. This operational shift necessitates a deeper understanding of the mixing process informed by particle dynamics and variable interdependencies. The thesis aims to establish a framework for characterizing and improving continuous pharmaceutical blending using a tiered experimental methodology and multivariate analysis. This parameter space exploration attempts to reconcile previous research within the context of cohesive pharmaceutical powders and develop general design principles for maximizing blender performance. A design of experiments was conducted to determine mixing performance with respect to three factors - physical design, operating parameters, and material properties. Multivariate analysis using projections to latent structures was employed to quantify the effect of raw and intermediate variables on the variance reduction ratio. Significant parameters identified included the choice of API, fill fraction, the number of blade passes, the mean residence time, the Bodenstein number, and the period of input feed fluctuations. The results highlight the importance of shear and radial mixing for cohesive powders, which suggest that one-dimensional axial models common in blending literature may not be a sufficient theoretical framework for pharmaceutical applications. The research yielded several insights into design principles for optimizing blending performance. Increasing mean residence time and radial mixing create more robust processing by reducing the impact of material properties and fluctuations in feed consistency. The variance reduction ratio can be improved in a cost-effective manner by determining the fill fraction which maximizes intermediate metrics such as space time, mean residence time, and the number of blade passes. Multivariate analysis was demonstrated to be a practical tool for parameter space optimization and a promising technique for characterizing the effect of material properties on processing.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Chemical Engineering, 2011.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 113-119).
 
Date issued
2011
URI
http://hdl.handle.net/1721.1/65761
Department
Massachusetts Institute of Technology. Department of Chemical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Chemical Engineering.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.