Systematics of black hole binary inspiral kicks and the slowness approximation
Author(s)
Price, Richard H.; Khanna, Gaurav; Hughes, Scott A
DownloadPrice-2011-Systematics of black.pdf (530.2Kb)
PUBLISHER_POLICY
Publisher Policy
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Terms of use
Metadata
Show full item recordAbstract
During the inspiral and merger of black holes, the interaction of gravitational wave multipoles carries linear momentum away, thereby providing an astrophysically important recoil, or “kick” to the system and to the final black hole remnant. It has been found that linear momentum during the last stage (quasinormal ringing) of the collapse tends to provide an “antikick” that in some cases cancels almost all the kick from the earlier (quasicircular inspiral) emission. We show here that this cancellation is not due to peculiarities of gravitational waves, black holes, or interacting multipoles, but simply to the fact that the rotating flux of momentum changes its intensity slowly. We show furthermore that an understanding of the systematics of the emission allows good estimates of the net kick for numerical simulations started at fairly late times, and is useful for understanding qualitatively what kinds of systems provide large and small net kicks.
Date issued
2011-06Department
Massachusetts Institute of Technology. Department of Physics; MIT Kavli Institute for Astrophysics and Space ResearchJournal
Physical review D
Publisher
American Physical Society
Citation
Price, Richard, Gaurav Khanna, and Scott Hughes. “Systematics of black hole binary inspiral kicks and the slowness approximation.” Physical Review D 83 (2011): n. pag. © 2011 American Physical Society
Version: Final published version
ISSN
1550-7998
1550-2368