Show simple item record

dc.contributor.advisorEmery N. Brown.en_US
dc.contributor.authorBa, Demba Elimaneen_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2011-09-27T18:30:46Z
dc.date.available2011-09-27T18:30:46Z
dc.date.copyright2011en_US
dc.date.issued2011en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/66000
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2011.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 115-118).en_US
dc.description.abstractThe formulation of multivariate point-process (MPP) models based on the Jacod likelihood does not allow for simultaneous occurrence of events at an arbitrarily small time resolution. In this thesis, we introduce two versatile representations of a simultaneous event multivariate point-process (SEMPP) model to correct this important limitation. The first one maps an SEMPP into a higher-dimensional multivariate point-process with no simultaneities, and is accordingly termed the disjoint representation. The second one is a marked point-process representation of an SEMPP, which leads to new thinning and time-rescaling algorithms for simulating an SEMPP stochastic process. Starting from the likelihood of a discrete-time form of the disjoint representation, we present derivations of the continuous likelihoods of the disjoint and MkPP representations of SEMPPs. For static inference, we propose a parametrization of the likelihood of the disjoint representation in discrete-time which gives a multinomial generalized linear model (mGLM) algorithm for model fitting. For dynamic inference, we derive generalizations of point-process adaptive filters. The MPP time-rescaling theorem can be used to assess model goodness-of-fit. We illustrate the features of our SEMPP model by simulating SEMPP data and by analyzing neural spiking activity from pairs of simultaneously-recorded rat thalamic neurons stimulated by periodic whisker deflections. The SEMPP model demonstrates a strong effect of whisker motion on simultaneous spiking activity at the one millisecond time scale. Together, the MkPP representation of the SEMPP model, the mGLM and the MPP time-rescaling theorem offer a theoretically sound, practical tool for measuring joint spiking propensity in a neuronal ensemble.en_US
dc.description.statementofresponsibilityby Demba Ba.en_US
dc.format.extent118 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleAlgorithms and inference for simultaneous-event multivariate point-process, with applications to neural dataen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc751522025en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record