MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Convex optimization methods for graphs and statistical modeling

Author(s)
Chandrasekaran, Venkat
Thumbnail
DownloadFull printable version (14.01Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Alan S. Willsky and Pablo A. Parrilo.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
An outstanding challenge in many problems throughout science and engineering is to succinctly characterize the relationships among a large number of interacting entities. Models based on graphs form one major thrust in this thesis, as graphs often provide a concise representation of the interactions among a large set of variables. A second major emphasis of this thesis are classes of structured models that satisfy certain algebraic constraints. The common theme underlying these approaches is the development of computational methods based on convex optimization, which are in turn useful in a broad array of problems in signal processing and machine learning. The specific contributions are as follows: -- We propose a convex optimization method for decomposing the sum of a sparse matrix and a low-rank matrix into the individual components. Based on new rank-sparsity uncertainty principles, we give conditions under which the convex program exactly recovers the underlying components. -- Building on the previous point, we describe a convex optimization approach to latent variable Gaussian graphical model selection. We provide theoretical guarantees of the statistical consistency of this convex program in the high-dimensional scaling regime in which the number of latent/observed variables grows with the number of samples of the observed variables. The algebraic varieties of sparse and low-rank matrices play a prominent role in this analysis. -- We present a general convex optimization formulation for linear inverse problems, in which we have limited measurements in the form of linear functionals of a signal or model of interest. When these underlying models have algebraic structure, the resulting convex programs can be solved exactly or approximately via semidefinite programming. We provide sharp estimates (based on computing certain Gaussian statistics related to the underlying model geometry) of the number of generic linear measurements required for exact and robust recovery in a variety of settings. -- We present convex graph invariants, which are invariants of a graph that are convex functions of the underlying adjacency matrix. Graph invariants characterize structural properties of a graph that do not depend on the labeling of the nodes; convex graph invariants constitute an important subclass, and they provide a systematic and unified computational framework based on convex optimization for solving a number of interesting graph problems. We emphasize a unified view of the underlying convex geometry common to these different frameworks. We describe applications of both these methods to problems in financial modeling and network analysis, and conclude with a discussion of directions for future research.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2011.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 209-220).
 
Date issued
2011
URI
http://hdl.handle.net/1721.1/66002
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.