MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Understanding and predicting where people look in images

Author(s)
Judd, Tilke (Tilke M.)
Thumbnail
DownloadFull printable version (23.60Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Frédo Durand and Antonio Torralba.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
For many applications in graphics, design, and human computer interaction, it is essential to understand where humans look in a scene. This is a challenging task given that no one fully understands how the human visual system works. This thesis explores the way people look at different types of images and provides methods of predicting where they look in new scenes. We describe a new way to model where people look from ground truth eye tracking data using techniques of machine learning that outperforms all existing models, and provide a benchmark data set to quantitatively compare existing and future models. In addition we explore how image resolution affects where people look. Our experiments, models, and large eye tracking data sets should help future researchers better understand and predict where people look in order to create more powerful computational vision systems.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2011.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 115-126).
 
Date issued
2011
URI
http://hdl.handle.net/1721.1/66008
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.