Show simple item record

dc.contributor.advisorSanjoy K. Mitter and Venkatesh Saligrama.en_US
dc.contributor.authorJones, Peter B., Ph.D. Massachusetts Institute of Technologyen_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2011-09-27T18:32:03Z
dc.date.available2011-09-27T18:32:03Z
dc.date.copyright2011en_US
dc.date.issued2011en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/66010
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2011.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 157-168).en_US
dc.description.abstractExpert judgments of probability and expectation play an integral role in many systems. Financial markets, public policy, medical diagnostics and more rely on the ability of informed experts (both human and machine) to make educated assessments of the likelihood of various outcomes. Experts however are not immune to errors in judgment (due to bias, quantization effects, finite information or many other factors). One way to compensate for errors in individual judgments is to elicit estimates from multiple experts and then fuse the estimates together. If the experts act sufficiently independently to form their assessments, it is reasonable to assume that individual errors in judgment can be negated by pooling the experts' opinions. Determining when experts' opinions are in error is not always a simple matter. However, one common way in which experts' opinions may be seen to be in error is through inconsistency with the known underlying structure of the space of events. Not only is structure useful in identifying expert error, it should also be taken into account when designing algorithms to approximate or fuse conflicting expert assessments. This thesis generalizes previously proposed constrained optimization methods for fusing expert assessments of uncertain events and quantities. The major development consists of a set of information geometric tools for reconciling assessments that are inconsistent with the assumed structure of the space of events. This work was sponsored by the U.S. Air Force under Air Force Contract FA8721- 05-C-0002. Opinions, interpretations, conclusions, and recommendations are those of the authors and are not necessarily endorsed by the United States Government.en_US
dc.description.statementofresponsibilityby Peter B. Jones.en_US
dc.format.extent168 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleCoherent approximation of distributed expert assessmentsen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc751924905en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record