MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Encryption on the air : non-Invasive security for implantable medical devices

Author(s)
Al-Hassanieh, Haitham (Haitham Zuhair)
Thumbnail
DownloadFull printable version (5.434Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Dina Katabi.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Modern implantable medical devices (IMDs) including pacemakers, cardiac defibrillators and nerve stimulators feature wireless connectivity that enables remote monitoring and post-implantation adjustment. However, recent work has demonstrated that flawed security tempers these medical benefits. In particular, an understandable lack of cryptographic mechanisms results in the IMD disclosing private data and being unable to distinguish authorized from unauthorized commands. In this thesis, we present IMD-Shield; a prototype defenses against a previously proposed suite of attacks on IMDs. IMD-Shield is an external entity that uses a new full dulpex radio design to secure transmissions to and from the IMD on the air wihtout incorporating the IMD itself. Because replacing the install base of wireless-enabled IMDs is infeasible, our system non-invasively enhances the security of unmodified IMDs. We implement and evaluate our mechanism against modern IMDs in a variety of attack scenarios and find that it effectively provides confidentiality for private data and shields the IMD from unauthorized commands.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2011.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 73-78).
 
Date issued
2011
URI
http://hdl.handle.net/1721.1/66020
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.