Show simple item record

dc.contributor.advisorMuriel Médard and Linda Zeger.en_US
dc.contributor.authorCloud, Jason M. (Jason Michael)en_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2011-09-27T18:33:47Z
dc.date.available2011-09-27T18:33:47Z
dc.date.copyright2011en_US
dc.date.issued2011en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/66024
dc.descriptionThesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2011.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 87-90).en_US
dc.description.abstractA cross-layer design approach is proposed that can be used to optimize the cooperative use of multi-packet reception (MPR) and network coding. A simple and intuitive model is constructed for the behavior of an opportunistic network coding scheme called COPE proposed by Katti et. al., MPR, the 802.11 MAC, and their combination. The model is then applied to key small canonical topology components and their larger counterparts. The results obtained from this model match the available experimental results with fidelity. Using this model, fairness allocation by the 802.11 MAC is shown to significantly impede performance and cause non-monotonic saturation behaviors; hence, a new MAC approach is devised that not only substantially improves throughput by providing monotonic saturation but provides fairness to flows of information rather than to nodes. Using this improved MAC, it is shown that cooperation between network coding and MPR achieves super-additive gains of up to 6.3 times that of routing alone with the standard 802.11 MAC. Furthermore, the model is extended to analyze the improved MAC's asymptotic, delay, and throughput behaviors. Finally, it is shown that although network performance is reduced under substantial asymmetry or limited implementation of MPR to a central/bottleneck node, there are some important practical cases, even under these conditions, where MPR, network coding, and their combination provide significant gains.en_US
dc.description.statementofresponsibilityby Jason M. Cloud.en_US
dc.format.extent90 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleCross-layer design with multi-packet reception, MAC, and network coding in multi-hop networksen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc751989148en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record