MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Making Linux protection mechanisms egalitarian with UserFS

Author(s)
Kim, Taesoo, Ph. D. Massachusetts Institute of Technology
Thumbnail
DownloadFull printable version (2.482Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Nickolai Zeldovich.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
UserFS provides egalitarian OS protection mechanisms in Linux. UserFS allows any user-not just the system administrator-to allocate Unix user IDs, to use chroot, and to set up firewall rules in order to confine untrusted code. One key idea in UserFS is representing user IDs as files in a /proc-like file system, thus allowing applications to manage user IDs like any other files, by setting permissions and passing file descriptors over Unix domain sockets. UserFS addresses several challenges in making user IDs egalitarian, including accountability, resource allocation, persistence, and UID reuse. We have ported several applications to take advantage of UserFS; by changing just tens to hundreds of lines of code, we prevented attackers from exploiting application-level vulnerabilities, such as code injection or missing ACL checks in a PHP-based wiki application. Implementing UserFS requires minimal changes to the Linux kernel-a single 3,000-line kernel module-and incurs no performance overhead for most operations, making it practical to deploy on real systems.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2011.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 46-51).
 
Date issued
2011
URI
http://hdl.handle.net/1721.1/66031
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.