Strategic development of a manufacturing execution system (MES) for cold chain management using information product mapping
Author(s)
Waldron, Todd Andrew
DownloadFull printable version (4.242Mb)
Other Contributors
Leaders for Global Operations Program.
Advisor
Stuart Madnick and J. Christopher Love.
Terms of use
Metadata
Show full item recordAbstract
The Vaccines & Diagnostics (V&D) division of Novartis recently developed a global automation strategy that highlights the need to implement a manufacturing execution system (MES). Benefits of an MES (electronic production records) include enhancing the compliance position of the organization, reducing production delays, and improving process flexibility; however, implementing an MES at global manufacturing sites presents unique logistical challenges that need to be overcome. The goal of this thesis is to investigate cold chain management as an expanded functionality for an MES. The thesis attempts to identify best practices for the strategic implementation of an MES in the management of cold chain vaccine products. While the concepts presented in this thesis are in the context of managing the cold chain for vaccine products, the best practices can be applied to a variety of cold chain management scenarios. In order to generate best practice recommendations for the strategic implementation of a cold chain management MES, a thorough understanding of the manufacturing process will need to be acquired. The first tool used to gain this understanding was value-stream mapping (VSM). VSM provided some insight into the current paper-based cold chain management system; however, the tool was not applicable for understanding the flow of information generated within the cold chain management system. Another tool was used to enable the organization to focus on the data generated by a process, the information product map (IP-Map). Current-state IP-Maps of the cold chain at the Rosia, Italy, site were generated and numerous areas for improving the data quality were identified. Future-state IP-Maps of the cold chain at the Rosia, Italy, site were generated to demonstrate how the implementation of a cold chain MES could improve the shortcomings of the current system. The future-state IP-Maps were based on underlying assumptions that directly lead to recommendations for the cold chain MES implementation. First, a unit of measurement smaller than lot size must be selected for tracking material data in the MES. Second, data capture technology for material entering or leaving cold storage must be integrated with the MES.
Description
Thesis (M.B.A.)--Massachusetts Institute of Technology, Sloan School of Management; and, (S.M.)--Massachusetts Institute of Technology, Dept. of Chemical Engineering; in conjunction with the Leaders for Global Operations Program at MIT, 2011. Cataloged from PDF version of thesis. Includes bibliographical references (p. 63).
Date issued
2011Department
Leaders for Global Operations Program at MIT; Massachusetts Institute of Technology. Department of Chemical Engineering; Sloan School of ManagementPublisher
Massachusetts Institute of Technology
Keywords
Sloan School of Management., Chemical Engineering., Leaders for Global Operations Program.