Show simple item record

dc.contributor.advisorDavid Simchi-Levi and Roy E. Welsch.en_US
dc.contributor.authorMasse, Brian Roberten_US
dc.contributor.otherLeaders for Global Operations Program.en_US
dc.date.accessioned2011-09-27T18:37:49Z
dc.date.available2011-09-27T18:37:49Z
dc.date.copyright2011en_US
dc.date.issued2011en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/66057
dc.descriptionThesis (M.B.A.)--Massachusetts Institute of Technology, Sloan School of Management; and, (S.M.)--Massachusetts Institute of Technology, Engineering Systems Division; in conjunction with the Leaders for Global Operations Program at MIT, 2011.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. [51]).en_US
dc.description.abstractThe supply chains of aerospace products can be complex, involving thousands of components per product and hundreds of vendors spaced out over an increasingly global landscape. Managing all inputs necessary for these complex aerospace supply chains is a task that is critical to the success of any firm and requires extensive planning, close partnerships, and detailed analysis. This thesis outlines a system for optimal safety stock management in high volume aerospace supply chains. Given such supply chain parameters as component inventory values, procurement and manufacturing lead times, demand distributions, and bills of material, the ideal safety stock locations and sizes which result in minimal overall inventory levels are calculated by a nonlinear optimization program. With this safety stock structure, aerospace firms can operate their supply chains with higher customer service rates and lower inventory levels. A methodology is also developed to help aerospace companies improve their existing supply chains as efficiently as possible. Considering the limited time and resources available, a company may not be able to enhance all areas of its operations and determining where to improve with the greatest effect on customer service levels and inventory can be difficult. The framework developed provides general guidelines to ensure improvement resources are being deployed most efficiently. Finally, business environment and operations considerations are discussed to aid companies in the process of implementing supply chain improvements and instituting organizational change.en_US
dc.description.statementofresponsibilityby Brian Robert Masse.en_US
dc.format.extent49, [2] p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectSloan School of Management.en_US
dc.subjectEngineering Systems Division.en_US
dc.subjectLeaders for Global Operations Program.en_US
dc.titleInventory optimization in high volume aerospace supply chainsen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.description.degreeM.B.A.en_US
dc.contributor.departmentLeaders for Global Operations Program at MITen_US
dc.contributor.departmentMassachusetts Institute of Technology. Engineering Systems Division
dc.contributor.departmentSloan School of Management
dc.identifier.oclc752955507en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record