Show simple item record

dc.contributor.advisorRoy Welsch and Anthony Sinskey.en_US
dc.contributor.authorLeiter, Kevin M. (Kevin Michael)en_US
dc.contributor.otherLeaders for Global Operations Program.en_US
dc.date.accessioned2011-09-27T18:38:09Z
dc.date.available2011-09-27T18:38:09Z
dc.date.copyright2011en_US
dc.date.issued2011en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/66060
dc.descriptionThesis (M.B.A.)--Massachusetts Institute of Technology, Sloan School of Management; and, (S.M.)--Massachusetts Institute of Technology, Engineering Systems Division; in conjunction with the Leaders for Global Operations Program at MIT, 2011.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 65-66).en_US
dc.description.abstractOverly complex product portfolios lead to inefficient use of resources and limit an organization's ability to react quickly to changing market dynamics. The challenges of reducing portfolio complexity are defining excess complexity, identifying it in the portfolio, and removing it while still delivering value to customers. Novartis Pharmaceuticals, in agreement with the prevalent operational excellence culture, is exploring complexity reduction as a mechanism to reduce waste, costs, and inventory levels. This thesis proposes the use of a comprehensive complexity reduction approach which targets both large and tail-end products for rationalization. The first complexity reduction focus area, redundant product rationalization, targets medium to large stock keeping units that do not directly satisfy a unique customer requirement. Removing redundant products has two benefits. First, larger products consume more resources, so the cost savings associated with removing a large redundant product are greater than that of smaller products. Second, sales levels will be preserved, as the demand for the rationalized product will shift to the remaining products that still meet the customer requirement in question. The second focus area is the more traditional tail-end pruning. By removing smaller, less profitable products and product groups, critical resources can be reallocated to more profitable products or new product launches. Novartis has piloted and partially implemented this approach with impressive results. With the support of influential leaders across all functions, Novartis is expecting a reduction of 15% of the portfolio in terms of number of finished product stock keeping units and a reduction of up to $22 million USD in inventory value. Other benefits include improvements in demand forecast accuracy, production write-offs, asset utilization, and replenishment lead times.en_US
dc.description.statementofresponsibilityby Kevin M. Leiter.en_US
dc.format.extent66 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectSloan School of Management.en_US
dc.subjectEngineering Systems Division.en_US
dc.subjectLeaders for Global Operations Program.en_US
dc.titleAssessing and reducing product portfolio complexity in the pharmaceutical industryen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.description.degreeM.B.A.en_US
dc.contributor.departmentLeaders for Global Operations Program at MITen_US
dc.contributor.departmentMassachusetts Institute of Technology. Engineering Systems Division
dc.contributor.departmentSloan School of Management
dc.identifier.oclc753563930en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record