Fusion materials modeling: Challenges and opportunities
Author(s)
Wirth, B. D.; Nordlund, K.; Xu, D.; Whyte, Dennis G
DownloadWhyte_Fusion Materials.pdf (1.170Mb)
PUBLISHER_POLICY
Publisher Policy
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Terms of use
Metadata
Show full item recordAbstract
The plasma facing components, first wall, and blanket systems of future tokamak-based fusion power plants arguably represent the single greatest materials engineering challenge of all time. Indeed, the United States National Academy of Engineering has recently ranked the quest for fusion as one of the top grand challenges for engineering in the 21st century. These challenges are even more pronounced by the lack of experimental testing facilities that replicate the extreme operating environment involving simultaneous high heat and particle fluxes, large time-varying stresses, corrosive chemical environments, and large fluxes of 14-MeV peaked fusion neutrons. Fortunately, recent innovations in computational modeling techniques, increasingly powerful high-performance and massively parallel computing platforms, and improved analytical experimental characterization tools provide the means to develop self-consistent, experimentally validated models of materials performance and degradation in the fusion energy environment. This article will describe the challenges associated with modeling the performance of plasma facing component and structural materials in a fusion materials environment, the opportunities to utilize high-performance computing, and two examples of recent progress.
Date issued
2011-03Department
Massachusetts Institute of Technology. Department of Nuclear Science and Engineering; Massachusetts Institute of Technology. Plasma Science and Fusion CenterJournal
MRS Bulletin
Publisher
Materials Research Society / Cambridge University Press
Citation
Wirth, B.D. et al. “Fusion materials modeling: Challenges and opportunities.” MRS Bulletin 36 (2011): 216-222. © 2011 Materials Research Society
Version: Final published version
ISSN
1938-1425
0883-7694