MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Traffic delay prediction from historical observations

Author(s)
Malalur, Paresh (Paresh G.)
Thumbnail
DownloadFull printable version (7.730Mb)
Alternative title
Traffic delay prediction from sparse historical observations
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Hari Balakrishnan and Samuel Madden.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Road traffic congestion is one of the biggest frustrations for the daily commuter. By improving the currently available travel estimates, one can hope to save time, fuel and the environment by avoiding traffic jams. Before one can predict the best route for a user to take, one must first be able to accurately predict future travel times. In this thesis, we develop a classification-based technique to extract information from historical traffic data to help improve delay estimates for road segments. Our techniques are able to reduce the traffic delay prediction error rate from over 20% to less than 10%. We were hence able to show that by using historical information, one can drastically increase the accuracy of traffic delay prediction. The algorithm is designed to enable delay prediction on a per-segment basis in order to enable the use of simple routing schemes to solve the bigger problem of predicting best future travel paths.
Description
Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2011.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 75-77).
 
Date issued
2011
URI
http://hdl.handle.net/1721.1/66444
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.