MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Ensemble modeling of [beta]-sheet proteins

Author(s)
O'Donnell, Charles William
Thumbnail
DownloadFull printable version (9.371Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Srinivas Devadas, Bonnie Berger and Susan Lindquist.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Our ability to characterize protein structure and dynamics is vastly outpaced by the speed of modern genetic sequencing, creating a growing divide between our knowledge of biological sequence and structure. Structural modeling algorithms offer the hope to bridge this gap through computational exploration of the sequence determinants of structure diversity. In this thesis, we introduce new algorithms that enable the efficient modeling of protein structure ensembles and their sequence variants. These statistical mechanics-based constructions enable the identification of all energetically likely sequence/structure states for a family of proteins. Beyond improved structure predictions, this approach enables a framework for thermodynamically-driven mutational and comparative analysis as well as the approximation of kinetic protein folding pathways. We have applied these techniques to two protein types that are notoriously difficult to characterize biochemically: transmembrane P-barrel proteins and amyloid fibrils. For these we advance the state-of-the-art in structure prediction, mutational analysis, and sequence alignment. Further, we have collaborated to apply these methods to open scientific questions about amyloid fibrils and bacterial biofilms.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2011.
 
In title on title page, [beta] appears as lower case Greek letter. Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 149-161).
 
Date issued
2011
URI
http://hdl.handle.net/1721.1/66458
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.