Show simple item record

dc.contributor.advisorJonathan Bernstein and M. Fatih Yanik.en_US
dc.contributor.authorVarsanik, Jonathan Sen_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2011-10-17T21:29:34Z
dc.date.available2011-10-17T21:29:34Z
dc.date.copyright2011en_US
dc.date.issued2011en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/66467
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2011.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references.en_US
dc.description.abstractIntegrated lab-on-a-chip devices provide the promise of many benefits in many application areas. A low noise, high resolution, high sensitivity integrated optical microfluidic device would not only improve the capabilities of existing procedures but also enable new applications. This thesis presents an architecture and fabrication process for such a device. Previously, the possibilities for such integrated systems were limited by existing fabrication technologies. An integrated fabrication process including glass nanofluidics, diffused waveguides and metal structures was developed. To enable this process a voltage-assisted polymer bond procedure was developed. This bond process enables high strength, robust, optically clear, low temperature bonding of glass - a capability that was not possible before. Bond strength was compared with a glass-to-glass anodic type bond using various materials and a polymer bond using two polymers: Cytop and PMMA. Bond strength was far superior to standard polymer bonding procedures. Design considerations to minimize background noise are presented, analyzed and implemented. Using Cytop as an index-matched polymer layer reduces scattered light in the device. Plasmonic devices driven via evanescent fields were designed, simulated, fabricated, and tested in isolation as well as in the integrated system. A sample device was made to demonstrate applicability of this process to direct linear analysis of DNA. The device was shown to provide enhanced and confined electromagnetic excitation as well as the capability to excite submicron particles. A demonstrated excitation spot of 200nm is the best we have seen in this type of device. Further work is suggested that can improve this resolution further.en_US
dc.description.statementofresponsibilityby Jonathan S. Varsanik.en_US
dc.format.extent175 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleIntegrated optic/nanofluidic detection device with plasmonic readouten_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc756400394en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record