MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Efficient Lagrangian relaxation algorithms for exact inference in natural language tasks

Author(s)
Rush, Alexander M. (Alexander Matthew)
Thumbnail
DownloadFull printable version (5.814Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Michael Collins.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
For many tasks in natural language processing, finding the best solution requires a search over a large set of possible structures. Solving these combinatorial search problems exactly can be inefficient, and so researchers often use approximate techniques at the cost of model accuracy. In this thesis, we turn to Lagrangian relaxation as an alternative to approximate inference in natural language tasks. We demonstrate that Lagrangian relaxation algorithms provide efficient solutions while still maintaining formal guarantees. The approach leads to inference algorithms with the following properties: " The resulting algorithms are simple and efficient, building on standard combinatorial algorithms for relaxed problems. " The algorithms provably solve a linear programming (LP) relaxation of the original inference problem. " Empirically, the relaxation often leads to an exact solution to the original problem. We develop Lagrangian relaxation algorithms for several important tasks in natural language processing including higher-order non-projective dependency parsing, syntactic machine translation, integrated constituency and dependency parsing, and part-of-speech tagging with inter-sentence constraints. For each of these tasks, we show that the Lagrangian relaxation algorithms are often significantly faster than exact methods while finding the exact solution with a certificate of optimality in the vast majority of examples.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2011.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 95-99).
 
Date issued
2011
URI
http://hdl.handle.net/1721.1/66477
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.