A study of through-silicon-via (TSV) induced transistor variation
Author(s)
Yu, Li, S.M. Massachusetts Institute of Technology
DownloadFull printable version (10.28Mb)
Alternative title
Study of through-silicon-vias (TSVs) induced transistor variation
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Duane S. Boning.
Terms of use
Metadata
Show full item recordAbstract
As continued scaling becomes increasingly difficult, 3D integration has emerged as a viable solution to achieve higher bandwidth and power efficiency. Through-siliconvias (TSVs), which directly connect stacked structures die-to-die, is one of the key techniques enabling 3D integration. The process steps and physical presence of TSVs, however, may generate a stress-induced thermal mismatch between TSVs and the silicon bulk. These effects could further perturb the performance of nearby electronic structures, particularly transistors, diodes, and associated circuits. This thesis presents a comprehensive study to characterize, analyze and model the impact of TSV-induced stress impact on device and circuit performance and its interaction with polysilicon and shallow-trench-isolation (STI) layout pattern density. A test chip is designed with multiplexing test circuits providing measurements of key parameters of a large number of devices. These devices under test (DUTs) have layouts that explore a range of TSV and device layout choices in the design of experiments (DOEs). The test chip uses a scan chain approach combined with low-leakage and low-variation switches and Kelvin sensing connections, which provide access to detailed analog device characteristics in large arrays of test devices. A test circuit and an Ioff measurement method is designed to perform off-chip wafer probe testing measurement. In addition, a finite element analysis model is constructed to mimic realistic TSV structures and processes. A complete flow and methodology to analyze transistor characteristics and circuit performance under the influence of TSV stress is proposed. An efficient algorithm is also proposed to simulate full-chip circuit variation under the impact of TSV stress based on a grid partition approach. Test cases corresponding to the aforementioned test chip are simulated for comparison with measurement data.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2011. Cataloged from PDF version of thesis. Includes bibliographical references (p. 83-85).
Date issued
2011Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer SciencePublisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.