Show simple item record

dc.contributor.advisorWilliam J. Blackwell and David H. Staelin.en_US
dc.contributor.authorScarito, Michael Pen_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2011-11-01T19:47:22Z
dc.date.available2011-11-01T19:47:22Z
dc.date.copyright2011en_US
dc.date.issued2011en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/66808
dc.descriptionThesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2011.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 103-105).en_US
dc.description.abstractSatellite-based passive microwave remote sensing is a valuable tool for global weather monitoring and prediction. This thesis presents the design and development of a low-cost airborne weather sensing instrument to independently validate a satellite-based sensor platform. The NPOESS Aircraft Sounder Testbed - K-band (NAST-K) is a passive microwave radiometer operating over approximately 200 MHz bandwidth centered at 23.8 GHz and 31.4 GHz, whose data can be used to find surface water, humidity, and temperature conditions. NAST-K flies along with the existing NAST-M instrument at an altitude of 18 km in the NASA ER-2 high altitude aircraft. The primary function of NASTK is to provide coverage of channels 1 and 2 of the Advanced Technology Microwave Sounder (ATMS) aboard the NPOESS Preparatory Project (NPP) satellite, scheduled to be launched in October 2011. The combined NAST-M/K system can validate the performance of ATMS on all channels with data products up to 17km, by underflying the satellite along the same ground track and collecting correlated data. NAST-K has fullwidth at half maximum beamwidths of 7.4° and 6.8° for the two channels respectively, which is approximately consistent with NAST-M. The effective spot size of NAST-K is 2.3km in diameter for the wider 23.8GHz channel at nadir, providing an areal resolution approximately 1000 times greater than ATMS. The major contributions of this thesis include the system-level design of NAST-K, the development of the video amplifier and embedded environmental monitor, and the analysis of the antenna system.en_US
dc.description.statementofresponsibilityby Michael P. Scarito.en_US
dc.format.extent105 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleDesign and development of an airborne microwave radiometer for atmospheric sensingen_US
dc.typeThesisen_US
dc.description.degreeM.Eng.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc757151648en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record