Show simple item record

dc.contributor.advisorFranz-Josef Ulm.en_US
dc.contributor.authorDeirieh, Amer (Amer Mohammad)en_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Civil and Environmental Engineering.en_US
dc.date.accessioned2011-11-01T19:54:05Z
dc.date.available2011-11-01T19:54:05Z
dc.date.copyright2011en_US
dc.date.issued2011en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/66860
dc.descriptionThesis (S.M.)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering, 2011.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 258-265).en_US
dc.description.abstractShale is a common type of sedimentary rock formed by clay particles and silt inclusions, and, in some cases, organic matter. Typically, shale formations serve as geological caps for hydrocarbon reservoirs. More recently, various shale formations have been identified as prolific sources of oil and natural gas and as host lithologies for the disposal of CO2 and nuclear waste. Despite its abundance, the characterization of shale rocks remains a challenging task due to their complex chemistry, heterogeneous microstructure, and multiscale mechanical behaviors. This thesis aims at establishing the link between the composition and mechanics of shale materials at grain scales. A comprehensive experimental program forms the basis for the characterization of the chemical composition and mechanical properties of shale at micrometer and sub-micrometer length scales. The chemical assessment was conducted through a novel experimental design involving grids of wave dispersive spectroscopy (WDS) spot analyses and statistical clustering of the chemical data generated by the experiments. This so-called statistical grid WDS technique was coupled with grid nanoindentation experiments as a means to assess the nanochemomechanics of shale rocks. The similar microvolumes probed by both methods ensure a direct relation between the local chemistry and mechanics response of shale materials. The results of this investigation showed that the grid WDS technique provides quantitative means to determine the chemistries of silt-size inclusions (mainly quartz and feldspars) and the clay matrix. The mineralogy assessments obtained by grid WDS analysis were validated through comparisons with results from X-ray image analysis and X-ray diffraction (XRD) experiments. The direct coupling of the grid WDS and indentation techniques revealed that the porous clay phase, previously inferred from the mechanistic interpretation of indentation experiments, corresponds to the response of clay minerals. The coupling technique also showed that clay minerals located nearby silt inclusions exhibit enhanced mechanical properties due to a composite action sensed by nanoindentation. The new understanding developed in this thesis provides valuable insight into the chemomechanics of shale at nano and microscales. This coupled assessment represents valuable information for the development of predictive models for shale materials which consider the intricate links of composition, microstructure, and mechanical performance.en_US
dc.description.statementofresponsibilityby Amer Deirieh.en_US
dc.format.extent265 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectCivil and Environmental Engineering.en_US
dc.titleStatistical nano-chemo-mechanical assessment of shale by wave dispersive spectroscopy and nanoindentationen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Civil and Environmental Engineering
dc.identifier.oclc758155973en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record