dc.contributor.advisor | Raúl A. Radovitzky. | en_US |
dc.contributor.author | Fidkowski, Piotr | en_US |
dc.contributor.other | Massachusetts Institute of Technology. Dept. of Aeronautics and Astronautics. | en_US |
dc.date.accessioned | 2011-11-18T20:57:09Z | |
dc.date.available | 2011-11-18T20:57:09Z | |
dc.date.copyright | 2011 | en_US |
dc.date.issued | 2011 | en_US |
dc.identifier.uri | http://hdl.handle.net/1721.1/67182 | |
dc.description | Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2011. | en_US |
dc.description | Cataloged from PDF version of thesis. | en_US |
dc.description | Includes bibliographical references (p. 95-98). | en_US |
dc.description.abstract | A novel, hybrid parallel C++ framework for computational solid mechanics is developed and presented. The modular and extensible design of this framework allows it to support a wide variety of numerical schemes including discontinuous Galerkin formulations and higher order methods, multiphysics problems, hybrid meshes made of different types of elements and a number of different linear and non-linear solvers. In addition, native, seamless support is included for hardware acceleration by Graphics Processing Units (GPUs) via NVIDIA's CUDA architecture for both single GPU workstations and heterogenous clusters of GPUs. The capabilities of the framework are demonstrated through a series of sample problems, including a laser induced cylindrical shock propagation, a dynamic problem involving a micro-truss array made of millions of elements, and a tension problem involving a shape memory alloy with a multifield formulation to model the superelastic effect. | en_US |
dc.description.statementofresponsibility | by Piotr Fidkowski. | en_US |
dc.format.extent | 98 p. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Massachusetts Institute of Technology | en_US |
dc.rights | M.I.T. theses are protected by
copyright. They may be viewed from this source for any purpose, but
reproduction or distribution in any format is prohibited without written
permission. See provided URL for inquiries about permission. | en_US |
dc.rights.uri | http://dspace.mit.edu/handle/1721.1/7582 | en_US |
dc.subject | Aeronautics and Astronautics. | en_US |
dc.title | A hybrid parallel framework for computational solid mechanics | en_US |
dc.type | Thesis | en_US |
dc.description.degree | S.M. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Aeronautics and Astronautics | |
dc.identifier.oclc | 758495683 | en_US |