Show simple item record

dc.contributor.advisorRaúl A. Radovitzky.en_US
dc.contributor.authorFidkowski, Piotren_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Aeronautics and Astronautics.en_US
dc.date.accessioned2011-11-18T20:57:09Z
dc.date.available2011-11-18T20:57:09Z
dc.date.copyright2011en_US
dc.date.issued2011en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/67182
dc.descriptionThesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2011.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 95-98).en_US
dc.description.abstractA novel, hybrid parallel C++ framework for computational solid mechanics is developed and presented. The modular and extensible design of this framework allows it to support a wide variety of numerical schemes including discontinuous Galerkin formulations and higher order methods, multiphysics problems, hybrid meshes made of different types of elements and a number of different linear and non-linear solvers. In addition, native, seamless support is included for hardware acceleration by Graphics Processing Units (GPUs) via NVIDIA's CUDA architecture for both single GPU workstations and heterogenous clusters of GPUs. The capabilities of the framework are demonstrated through a series of sample problems, including a laser induced cylindrical shock propagation, a dynamic problem involving a micro-truss array made of millions of elements, and a tension problem involving a shape memory alloy with a multifield formulation to model the superelastic effect.en_US
dc.description.statementofresponsibilityby Piotr Fidkowski.en_US
dc.format.extent98 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectAeronautics and Astronautics.en_US
dc.titleA hybrid parallel framework for computational solid mechanicsen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronautics
dc.identifier.oclc758495683en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record