Identification and evolution of quantities of interest for a stochastic process view of complex space system development
Author(s)
Sondecker, George Ralph, IV
DownloadFull printable version (18.50Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Aeronautics and Astronautics.
Advisor
David W. Miller.
Terms of use
Metadata
Show full item recordAbstract
The objective of stochastic process design is to strategically identify, measure, and reduce sources of uncertainty to guide the development of complex systems. Fundamental to this design approach is the idea that system development is driven by measurable characteristics called quantities of interest. These quantities of interest collectively describe the state of system development and evolve as the system matures. This thesis provides context for the contributions of quantities of interest to a stochastic process view of complex system development using three space hardware development projects. The CASTOR satellite provides the opportunity for retrospective identification of quantities of interest and their evolution through time. As a complement to CASTOR, the preliminary design of the REXIS x-ray spectrometer provides the foundation for applying stochastic process approaches during the early phases of system development. Lastly, a spacecraft panel structural dynamics experiment is presented that illustrates analysis techniques commonly employed in stochastic process analysis.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2011. Cataloged from PDF version of thesis. Includes bibliographical references (p. 115-116).
Date issued
2011Department
Massachusetts Institute of Technology. Department of Aeronautics and AstronauticsPublisher
Massachusetts Institute of Technology
Keywords
Aeronautics and Astronautics.