MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Trade study and application of symbiotic software and hardware fault-tolerance on a microcontroller-based avionics system

Author(s)
McCormack, Matthew Michael
Thumbnail
DownloadFull printable version (25.94Mb)
Alternative title
Trade study and application of software implemented fault-tolerance for microcontroller-based avionics
Other Contributors
Massachusetts Institute of Technology. Dept. of Aeronautics and Astronautics.
Advisor
Alvar Saenz-Otero and David W. Miller.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Spacecraft avionics initially commanded the development of the microprocessor industry, enabling microprocessors to be designed specifically for the reliability demands posed by the radiation environment of space. However, microprocessor have shifted their focus from ensuring reliable operations to maximizing performance, forcing the price of spacecraft avionics to balloon. Costing over three orders of magnitude more than current state of the art general purpose processors, while performing operations an order of magnitude slower. These differences stem from the reliability requirements of operating in space, typically achieved through hardware-based modifications. While these solutions generate the necessary reliability, they limit the engineering options for the system and force the use of outdated technology. A solution researched but never widely implemented, is the use of error detection and correction software algorithms. An ideal design lies in the combination of hardware and software methods for providing reliability. A new avionics architecture was designed to implement a system using hardware and software to achieve reliability with COTS products. The architecture was applied to the CASTOR satellite as its primary avionics system, for verification testing of the architecture's functionality. This architecture further aims to expand spacecraft usage of microcontrollers as the primary spacecraft avionics computers.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2011.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 195-201).
 
Date issued
2011
URI
http://hdl.handle.net/1721.1/67194
Department
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics
Publisher
Massachusetts Institute of Technology
Keywords
Aeronautics and Astronautics.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.