Air-Combat Strategy Using Approximate Dynamic Programming
Author(s)
McGrew, James S.; How, Jonathan P.; Bush, Lawrence; Williams, Brian Charles; Roy, Nicholas
DownloadRoy_Air Combat.pdf (1.483Mb)
OPEN_ACCESS_POLICY
Open Access Policy
Creative Commons Attribution-Noncommercial-Share Alike
Terms of use
Metadata
Show full item recordAbstract
Unmanned Aircraft Systems (UAS) have the potential to perform many
of the dangerous missions currently own by manned aircraft. Yet, the
complexity of some tasks, such as air combat, have precluded UAS from
successfully carrying out these missions autonomously. This paper presents
a formulation of a level flight, fixed velocity, one-on-one air combat maneuvering problem and an approximate dynamic programming (ADP) approach for computing an efficient approximation of the optimal policy. In the version of the problem formulation considered, the aircraft learning the
optimal policy is given a slight performance advantage. This ADP approach
provides a fast response to a rapidly changing tactical situation, long planning horizons, and good performance without explicit coding of air combat tactics. The method's success is due to extensive feature development, reward shaping and trajectory sampling. An accompanying fast and e ffective rollout-based policy extraction method is used to accomplish on-line implementation. Simulation results are provided that demonstrate the robustness of the method against an opponent beginning from both off ensive and defensive situations. Flight results are also presented using micro-UAS own at MIT's Real-time indoor Autonomous Vehicle test ENvironment
(RAVEN).
Date issued
2010-09Department
Massachusetts Institute of Technology. Aerospace Controls Laboratory; Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory; Massachusetts Institute of Technology. Department of Aeronautics and AstronauticsJournal
Journal of Guidance, Control, and Dynamics
Publisher
American Institute of Aeronautics and Astronautics
Citation
McGrew, James S. et al. “Air-Combat Strategy Using Approximate Dynamic Programming.” Journal of Guidance, Control, and Dynamics 33 (2010): 1641-1654.
Version: Author's final manuscript
ISSN
0731-5090
1533-3884