MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Biomass characterization and reduced order modeling of mixed-feedstock gasification

Author(s)
Chapman, Alex J. (Alex Jacob)
Thumbnail
DownloadFull printable version (21.06Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Mechanical Engineering.
Advisor
Ahmed Ghoniem.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
There has been much effort to characterize and model coal for use in combustion and gasification. This work seeks to delineate the differences and similarities between biomass and coal, with emphasis on the state of the art in biomass pyrolysis/devolatilization modeling. An existing coal Entrained Flow Gasification (EFG) Reduced Order Model (ROM) was expanded to more accurately simulate the gasification of a mixed feedstock of biomass and coal. The GE 2700tpd gasifier was used because it is a widely used technology. The characteristics and state of the art in biomass conversion models were applied in the expanded ROM to model coal-biomass mixture gasification. Biomass has higher oxygen content and lower fixed carbon content than coal. Therefore, as results show, increasing the mass fraction of wood leads to a rise in temperature and drop in syngas heating value and Cold Gas Efficiency (CGE). The oxygen feed stream must be adjusted downward to maintain a constant temperature. Temperature change has the strongest effect on ash slag (lesser viscosity and thickness) while ash composition has a very small effect (greater viscosity and thickness).
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2011.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 88-90).
 
Date issued
2011
URI
http://hdl.handle.net/1721.1/67611
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.