Show simple item record

dc.contributor.advisorSarah Tao and Carol Livermore.en_US
dc.contributor.authorKo, Chi Wanen_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Mechanical Engineering.en_US
dc.date.accessioned2011-12-12T14:24:15Z
dc.date.available2011-12-12T14:24:15Z
dc.date.copyright2011en_US
dc.date.issued2011en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/67633
dc.descriptionThesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2011.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 82-84).en_US
dc.description.abstractRetinal degenerative diseases, including retinitis pigmentosa and age-related macular degeneration, affect more than ten million people in the US. Currently, there is no proven visually beneficial treatment for these types of disease; however, stem cell-based therapy is a recent strategy which has the potential to preserve and restore vision in these conditions. In addition to replacing lost or diseased cells, transplanted cells may be able to rescue dying photoreceptors of the host retina. While studies have shown that retinal progenitor cells (RPCs) delivered by bolus injection can differentiate into retinal specific neurons after subretinal transplantation, they have not been able to maintain morphologic development, lamination, or extensive integration with the host retina. Therefore, a mechanism is needed to confer organization and instructional cues to these grafted cells. In this research, micro and nano-electro-mechanical systems (MEMS/NEMS) processing techniques were used to create biodegradable thin-film scaffolds to guide the differentiation and organization of stem cells for retinal tissue engineering. Through standard MEMS processes, including photolithography and reactive ion etching, a high throughput array of sub-micron features (500 nm to 1 pm) was fabricated into silicon wafers. A novel templating process was developed to then imprint these structures into biodegradable polycaprolactone (PCL) thin films (5 -10 pm) with minimal deformation to the imprinted features. PCL was chosen due to its low melt temperature, adaptability to microfabrication processing, as well as its mechanical and bioresorptive properties. Furthermore, PCL thin films have been shown to be well tolerated long term when transplanted in the subretinal space of mice. RPCs were cultured on PCL thin films, and cell responses to sub-micron topography of varying dimension and geometry were characterized using scanning electron microscopy and immunocytochemistry. Sub-micron features were found to definitively affect cell behavior. For example, while RPCs cultured on post structures demonstrated an early upregulation of differentiation markers, including rhodopsin and recoverin, RPCs cultured on a ridge-groove topography developed substantial elongation and parallel alignment in addition to upregulation. This unique structured PCL thin-film platform therefore provides a means to organize and differentiate RPCs in a controlled manner and offers potential as a clinical treatment for retinal degenerative diseases.en_US
dc.description.statementofresponsibilityby Chi Wan Ko.en_US
dc.format.extent84 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMechanical Engineering.en_US
dc.titleOrganization and differentiation of stem cells on delivery scaffold for retinal tissue engineeringen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineering
dc.identifier.oclc765948832en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record