MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Arithmetic and analytic properties of finite field hypergeometric functions

Author(s)
Lennon, Catherine (Catherine Ann)
Thumbnail
DownloadFull printable version (3.967Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Mathematics.
Advisor
Benjamin Brubaker.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
The intent of this thesis is to provide a detailed study of the arithmetic and analytic properties of Gaussian (finite field) hypergeometric series. We present expressions for the number of F,-points on certain families of varieties as special values of these functions. We also present "hypergeometric trace formulas" for the traces of Hecke operators on spaces of cusp forms of levels 3 and 9. These formulas lead to a simple expression for the Fourier coefficients of r(3z)', the unique normalized cusp form of weight 4 and level 9. We then use this to show that a certain threefold is "modular" in the sense that the number of its F,-points is expressible in terms of these coefficients. In this way, we use Gaussian hypergeometric series as a tool for connecting arithmetic and analytic objects. We also discuss congruence relations between Gaussian and truncated classical hypergeometric series. In particular, we use hypergeometric transformation identities to express the pth Fourier coefficient of the unique newform of level 16 and weight 4 as a special value of a Gaussian hypergeometric series, when p =1 (mod 4). We then use this to prove a special case of Rodriguez-Villegas' supercongruence conjectures.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mathematics, 2011.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 97-100).
 
Date issued
2011
URI
http://hdl.handle.net/1721.1/67791
Department
Massachusetts Institute of Technology. Department of Mathematics
Publisher
Massachusetts Institute of Technology
Keywords
Mathematics.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.