dc.contributor.advisor | Thomas Peacock. | en_US |
dc.contributor.author | Saidi, Sasan John | en_US |
dc.contributor.other | Massachusetts Institute of Technology. Dept. of Mechanical Engineering. | en_US |
dc.date.accessioned | 2011-12-19T18:52:48Z | |
dc.date.available | 2011-12-19T18:52:48Z | |
dc.date.copyright | 2011 | en_US |
dc.date.issued | 2011 | en_US |
dc.identifier.uri | http://hdl.handle.net/1721.1/67799 | |
dc.description | Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2011. | en_US |
dc.description | Cataloged from PDF version of thesis. | en_US |
dc.description | Includes bibliographical references (p. 113-116). | en_US |
dc.description.abstract | The generation of 2D and 3D internal wave fields is extensively studied via planarand stereo- Particle Image Velocimetry (PIV) flow field measurement techniques. A benchmark was provided by an experiment involving tidal flow over a 2D Gaussian ridge; this study providing a counterpart with which studies of a 3D incised Gaussian ridge could be compared with. To further benchmark the 3D wave field studies an experiment involving the canonical setup of a vertically oscillating sphere was performed and the results compared with the latest theory; the excellent agreement obtained provided confidence in the stereo-PIV method for studying fully three-dimensional internal waves. The 3D incised Gaussian ridge generates a wave field characterized by noticeable, though weak, out-of-plane forcing that evolves from a relatively strong to a weakly localized quantity as the wave field transitions from super- to subcritical, while the in-plane velocity field appears nearly identical to its 2D counterpart. | en_US |
dc.description.statementofresponsibility | by Sasan John Saidi. | en_US |
dc.format.extent | 116 p. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Massachusetts Institute of Technology | en_US |
dc.rights | M.I.T. theses are protected by
copyright. They may be viewed from this source for any purpose, but
reproduction or distribution in any format is prohibited without written
permission. See provided URL for inquiries about permission. | en_US |
dc.rights.uri | http://dspace.mit.edu/handle/1721.1/7582 | en_US |
dc.subject | Mechanical Engineering. | en_US |
dc.title | Experimental investigation of 2D and 3D internal wave fields | en_US |
dc.title.alternative | Experimental investigation of two diminsional and three dimensional internal wave fields | en_US |
dc.type | Thesis | en_US |
dc.description.degree | S.M. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Mechanical Engineering | |
dc.identifier.oclc | 767827683 | en_US |