MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Acoustic Bragg reflectors for Q-enhancement of unreleased MEMS resonators

Author(s)
Wang, Wentao, Ph.D. Massachusetts Institute of Technology
Thumbnail
DownloadFull printable version (11.84Mb)
Alternative title
ABRs for quality factor-enhancements of unreleased Micro-Electro-Mechanical Systems resonators
Other Contributors
Massachusetts Institute of Technology. Dept. of Mechanical Engineering.
Advisor
Dana Weinstein and Carol Livermore.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
In this thesis, the author introduces the first fully unreleased Micro-Electro-Mechanical (MEM) resonator, and the design of acoustic Bragg reflectors (ABRs) for energy localization and quality factor (Q)- enhancement for unreleased resonators. Two of the greatest challenges in MEMS are those of packaging and integration with CMOS technology. Development of unreleased MEMS resonators at the transistor level of the CMOS stack will enable direct integration into front-end-of-line (FEOL) processing, making these devices an attractive choice for onchip signal generation and signal processing. The demonstrated first fully unreleased resonator exhibits a resonance at 39 GHz with a Q of 129, corresponding to the 1st harmonic longitudinal resonance of the unreleased resonator, a silicon Resonant Body Transistor (RBT) fully clad in Si0 2. A spurious mode occurs at 41 GHz, which is in good correspondence with simulation results. The Q of 129 at 39 GHz is about 4 times lower than that of its released counterpart. Enhanced with the ABRs, the unreleased resonator is able to maintain high Q, and suppress spurious modes. Analysis on the ABR design for unreleased resonators covers design principles, fabrication variations, and comparison to released devices. In the end, it is demonstrated that the ABR is more favorable than the phononic crystal for acoustic energy localization for unreleased resonators, providing a 9 times higher Q.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2011.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 63-65).
 
Date issued
2011
URI
http://hdl.handle.net/1721.1/67806
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.