MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Floer cohomology in the mirror of the projective plane and a binodal cubic curve

Author(s)
Pascaleff, James Thomas
Thumbnail
DownloadFull printable version (5.504Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Mathematics.
Advisor
Dennis Auroux.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
We construct a family of Lagrangian submanifolds in the Landau-Ginzburg mirror to the projective plane equipped with a binodal cubic curve as anticanonical divisor. These objects correspond under mirror symmetry to the powers of the twisting sheaf 0(1), and hence their Floer cohomology groups form an algebra isomorphic to the homogeneous coordinate ring. An interesting feature is the presence of a singular torus fibration on the mirror, of which the Lagrangians are sections. This gives rise to a distinguished basis of the Floer cohomology and the homogeneous coordinate ring parameterized by fractional integral points in the singular affine structure on the base of the torus fibration. The algebra structure on the Floer cohomology is computed using the symplectic techniques of Lefschetz fibrations and the TQFT counting sections of such fibrations. We also show that our results agree with the tropical analog proposed by Abouzaid-Gross-Siebert. Extensions to a restricted class of singular affine manifolds and to mirrors of the complements of components of the anticanonical divisor are discussed.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mathematics, 2011.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 115-117).
 
Date issued
2011
URI
http://hdl.handle.net/1721.1/67812
Department
Massachusetts Institute of Technology. Department of Mathematics
Publisher
Massachusetts Institute of Technology
Keywords
Mathematics.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.