## Floer cohomology in the mirror of the projective plane and a binodal cubic curve

##### Author(s)

Pascaleff, James Thomas
DownloadFull printable version (5.504Mb)

##### Other Contributors

Massachusetts Institute of Technology. Dept. of Mathematics.

##### Advisor

Dennis Auroux.

##### Terms of use

##### Metadata

Show full item record##### Abstract

We construct a family of Lagrangian submanifolds in the Landau-Ginzburg mirror to the projective plane equipped with a binodal cubic curve as anticanonical divisor. These objects correspond under mirror symmetry to the powers of the twisting sheaf 0(1), and hence their Floer cohomology groups form an algebra isomorphic to the homogeneous coordinate ring. An interesting feature is the presence of a singular torus fibration on the mirror, of which the Lagrangians are sections. This gives rise to a distinguished basis of the Floer cohomology and the homogeneous coordinate ring parameterized by fractional integral points in the singular affine structure on the base of the torus fibration. The algebra structure on the Floer cohomology is computed using the symplectic techniques of Lefschetz fibrations and the TQFT counting sections of such fibrations. We also show that our results agree with the tropical analog proposed by Abouzaid-Gross-Siebert. Extensions to a restricted class of singular affine manifolds and to mirrors of the complements of components of the anticanonical divisor are discussed.

##### Description

Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mathematics, 2011. Cataloged from PDF version of thesis. Includes bibliographical references (p. 115-117).

##### Date issued

2011##### Department

Massachusetts Institute of Technology. Department of Mathematics##### Publisher

Massachusetts Institute of Technology

##### Keywords

Mathematics.