dc.contributor.advisor | Jacob Lurie. | en_US |
dc.contributor.author | Rozenblyum, Nikita | en_US |
dc.contributor.other | Massachusetts Institute of Technology. Dept. of Mathematics. | en_US |
dc.date.accessioned | 2011-12-19T19:00:52Z | |
dc.date.available | 2011-12-19T19:00:52Z | |
dc.date.copyright | 2011 | en_US |
dc.date.issued | 2011 | en_US |
dc.identifier.uri | http://hdl.handle.net/1721.1/67813 | |
dc.description | Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mathematics, 2011. | en_US |
dc.description | Cataloged from PDF version of thesis. | en_US |
dc.description | Includes bibliographical references (p. 66-67). | en_US |
dc.description.abstract | For an algebraic group G and a projective curve X, we study the category of D-modules on the moduli space Bung of principal G-bundles on X using ideas from conformal field theory. We describe this category in terms of the action of infinitesimal Hecke functors on the category of quasi-coherent sheaves on Bung. This family of functors, parametrized by the Ran space of X, acts by averaging a quasi-coherent sheaf over infinitesimal modifications of G-bundles at prescribed points of X. We show that sheaves which are, in a certain sense, equivariant with respect to infinitesimal Hecke functors are exactly D-modules, i.e. quasi-coherent sheaves with a flat connection. This gives a description of flat connections on a quasi-coherent sheaf on Bung which is local on the Ran space. | en_US |
dc.description.statementofresponsibility | by Nikita Rozenblyum. | en_US |
dc.format.extent | 67 p. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Massachusetts Institute of Technology | en_US |
dc.rights | M.I.T. theses are protected by
copyright. They may be viewed from this source for any purpose, but
reproduction or distribution in any format is prohibited without written
permission. See provided URL for inquiries about permission. | en_US |
dc.rights.uri | http://dspace.mit.edu/handle/1721.1/7582 | en_US |
dc.subject | Mathematics. | en_US |
dc.title | Connections on conformal blocks | en_US |
dc.type | Thesis | en_US |
dc.description.degree | Ph.D. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Mathematics | |
dc.identifier.oclc | 767908297 | en_US |