MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Combinatorics in Schubert varieties and Specht modules

Author(s)
Yoo, Hwanchul
Thumbnail
DownloadFull printable version (3.983Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Mathematics.
Advisor
Alexander Postnikov.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
This thesis consists of two parts. Both parts are devoted to finding links between geometric/algebraic objects and combinatorial objects. In the first part of the thesis, we link Schubert varieties in the full flag variety with hyperplane arrangements. Schubert varieties are parameterized by elements of the Weyl group. For each element of the Weyl group, we construct certain hyperplane arrangement. We show that the generating function for regions of this arrangement coincides with the Poincaré polynomial if and only if the Schubert variety is rationally smooth. For classical types the arrangements are (signed) graphical arrangements coning from (signed) graphs. Using this description, we also find an explicit combinatorial formula for the Poincaré polynomial in type A. The second part is about Specht modules of general diagram. For each diagram, we define a new class of polytopes and conjecture that the normalized volume of the polytope coincides with the dimension of the corresponding Specht module in many cases. We give evidences to this conjecture including the proofs for skew partition shapes and forests, as well as the normalized volume of the polytope for the toric staircase diagrams. We also define new class of toric tableaux of certain shapes, and conjecture the generating function of the tableaux is the Frobenius character of the corresponding Specht module. For a toric ribbon diagram, this is consistent with the previous conjecture. We also show that our conjecture is intimately related to Postnikov's conjecture on toric Specht modules and McNamara's conjecture of cylindric Schur positivity.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mathematics, June 2011.
 
"June 2011." Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 57-59).
 
Date issued
2011
URI
http://hdl.handle.net/1721.1/67820
Department
Massachusetts Institute of Technology. Department of Mathematics
Publisher
Massachusetts Institute of Technology
Keywords
Mathematics.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.