dc.contributor.author | Kane, Jonathan | |
dc.contributor.author | Herrmann, Felix | |
dc.contributor.author | Toksoz, M. Nafi | |
dc.contributor.other | Massachusetts Institute of Technology. Earth Resources Laboratory | en_US |
dc.date.accessioned | 2011-12-21T20:46:23Z | |
dc.date.available | 2011-12-21T20:46:23Z | |
dc.date.issued | 2002 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/67852 | |
dc.description.abstract | We present a non-linear method for solving linear inverse problems by thresholding coefficients in the
wavelet domain1. Our method is based on the wavelet-vaguelette decomposition of Donoho (1992).
Numerical results for a synthetic travel-time inversion problem show that the wavelet based method
outperforms traditional least-squares methods of solution. | en_US |
dc.description.sponsorship | Massachusetts Institute of Technology. Earth Resources Laboratory | en_US |
dc.publisher | Massachusetts Institute of Technology. Earth Resources Laboratory | en_US |
dc.relation.ispartofseries | Earth Resources Laboratory Industry Consortia Annual Report;2002-09 | |
dc.title | Wavelet Domain Geophysical Inversion | en_US |
dc.type | Technical Report | en_US |
dc.contributor.mitauthor | Kane, Jonathan | |
dc.contributor.mitauthor | Herrmann, Felix | |
dc.contributor.mitauthor | Toksoz, M. Nafi | |
dspace.orderedauthors | Kane, Jonathan; Herrmann, Felix; Toksoz, M. Nafi | en_US |