MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Earth Resources Laboratory
  • ERL Industry Consortia Technical Reports
  • View Item
  • DSpace@MIT Home
  • Earth Resources Laboratory
  • ERL Industry Consortia Technical Reports
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Applying Compactness Constraints to Differential Traveltime Tomography

Author(s)
Ajo-Franklin, Jonathan B.; Minsley, Burke J.; Daley, Thomas M.
Thumbnail
DownloadFranklin_compactness_ERL2007.pdf (793.4Kb)
Other Contributors
Massachusetts Institute of Technology. Earth Resources Laboratory
Metadata
Show full item record
Abstract
Tomographic imaging problems are typically ill-posed and often require the use of regularization techniques to guarantee a stable solution. Minimization of a weighted norm of model length is one commonly used secondary constraint. Tikhonov methods exploit low-order differential operators to select for solutions that are small, flat, or smooth in one or more dimensions. This class of regularizing functionals may not always be appropriate, particularly in cases where the anomaly being imaged is generated by a non-smooth spatial process. Timelapse imaging of flow-induced velocity anomalies is one such case; flow features are often characterized by spatial compactness or connectivity. By performing inversions on differenced arrival time data, the properties of the timelapse feature can be directly constrained. We develop a differential traveltime tomography algorithm which selects for compact solutions i.e. models with a minimum area of support, through application of model-space iteratively reweighted least squares. Our technique is an adaptation of minimum support regularization methods previously explored within the potential theory community. We compare our inversion algorithm to the results obtained by traditional Tikhonov regularization for two simple synthetic models; one including several sharp localized anomalies and a second with smoother features. We use a more complicated synthetic test case based on multiphase flow results to illustrate the efficacy of compactness constraints for contaminant infiltration imaging. We conclude by applying the algorithm to a CO[subscript 2] sequestration monitoring dataset acquired at the Frio pilot site. We observe that in cases where the assumption of a localized anomaly is correct, the addition of compactness constraints improves image quality by reducing tomographic artifacts and spatial smearing of target features.
Date issued
2007
URI
http://hdl.handle.net/1721.1/68020
Publisher
Massachusetts Institute of Technology. Earth Resources Laboratory
Series/Report no.
Earth Resources Laboratory Industry Consortia Annual Report;2007-06

Collections
  • ERL Industry Consortia Technical Reports

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.