MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Earth Resources Laboratory
  • ERL Industry Consortia Technical Reports
  • View Item
  • DSpace@MIT Home
  • Earth Resources Laboratory
  • ERL Industry Consortia Technical Reports
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Redatumming Through a Salt Canopy – Another Salt Flank Imaging Strategy

Author(s)
Lu, Rongrong; Willis, Mark E.; Campman, Xander; Ajo-Franklin, Jonathan B.; Toksoz, M. Nafi
Thumbnail
DownloadLu_acoustic_ERL2007.pdf (651.9Kb)
Other Contributors
Massachusetts Institute of Technology. Earth Resources Laboratory
Metadata
Show full item record
Abstract
We describe a new short cut strategy to image the sediments and salt edge around a salt flank through an overburden salt canopy. We demonstrate its performance and capabilities on a synthetic acoustic seismic data from a Gulf of Mexico (GOM) style model. In this strategy, we first redatum the surface shots from a walk away Vertical Seismic Profile (WVSP) survey to be as if the source and receiver pairs had been located in the borehole at the positions of the receivers. This process creates effective downhole shot gathers by completely moving the surface shots through the salt canopy without any knowledge of the overburden velocity structure. After redatumming, we apply reverse time prestack depth migration to the effective downhole shot records using a simple linear v(z) gradient velocity model. This first pass of migration reveals the salt dome edge quite well. Once the salt dome edge is defined, a second pass of reverse time prestack depth migration is performed with an updated velocity model that now consists of the v(z) gradient and the salt dome. The second pass migration brings out the dipping sediments abutting the salt flank because these reflectors were illuminated by energy that bounced off the salt flank forming prismatic reflections. In this target-oriented strategy, the computationally fast redatumming process eliminates the need for the traditional complex process of velocity estimation, model building, and iterative depth migration to remove the effects of the salt canopy and surrounding overburden.
Date issued
2007
URI
http://hdl.handle.net/1721.1/68028
Publisher
Massachusetts Institute of Technology. Earth Resources Laboratory
Series/Report no.
Earth Resources Laboratory Industry Consortia Annual Report;2007-14

Collections
  • ERL Industry Consortia Technical Reports

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.