MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Earth Resources Laboratory
  • ERL Industry Consortia Technical Reports
  • View Item
  • DSpace@MIT Home
  • Earth Resources Laboratory
  • ERL Industry Consortia Technical Reports
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Hydraulic fracture quality from time lapse VSP and microseismic data

Author(s)
House, N. J.; Shemeta, J.; Willis, Mark E.; Willis, Kent M.; Burns, Daniel R.
Thumbnail
DownloadWillis_2008_final.pdf (831.9Kb)
Other Contributors
Massachusetts Institute of Technology. Earth Resources Laboratory
Metadata
Show full item record
Abstract
The ability to produce from low permeability, tight gas reservoirs is directly tied to the ability to repetitively perform successful hydraulic fracturing in a series of closely spaced wells. The key question is whether the induced fractures remain open and permeable, which is in part a function of the stress field and the emplacement of proppant. We study the ability to detect and characterize hydraulic fractures from scattered seismic energy. A 3D VSP forms the reference for seismic reflectivity before hydraulic fracturing. During the hydraulic fracturing the microseismic events are recorded and then the arrival times picked and the events located. Another 3D VSP survey is recorded after the fracture treatment. The difference between the VSP surveys yields a 3D time lapse VSP dataset which contains the changes in the reflected wave field and the addition of scattered energy. The microseismic moveout times can be used to extract from the time lapse VSP data the seismic energy scattered from the induced fracture planes. We show the encouraging results from both model and field data.
Date issued
2008
URI
http://hdl.handle.net/1721.1/68207
Publisher
Massachusetts Institute of Technology. Earth Resources Laboratory
Series/Report no.
Earth Resources Laboratory Industry Consortia Annual Report;2008-11

Collections
  • ERL Industry Consortia Technical Reports

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.