MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Inlet swirl distortion effects on the generation and propagation of fan rotor shock noise

Author(s)
Defoe, Jeff (Jeffrey James)
Thumbnail
DownloadFull printable version (25.43Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Aeronautics and Astronautics.
Advisor
Zoltán S. Spakovszky.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
A body-force-based fan model for the prediction of multiple-pure-tone noise generation is developed in this thesis. The model eliminates the need for a full-wheel, three-dimensional unsteady RANS simulation of the fan blade row, allowing Euler calculations to be used to capture the phenomena of interest. The Euler calculations reduce numerical wave dissipation and enable the simultaneous computation of source noise generation and propagation through the engine inlet to the far-field in non-uniform flow. The generated shock Mach numbers are in good agreement with experimental results, with the peak values predicted within 6%. An assessment of the far-field acoustics against experimental data showed agreement of 8 dB on average for the blade-passing tone. In a first-of-its-kind comparison, noise generation and propagation are computed for a fan installed in a conventional inlet and in a boundary-layer-ingesting serpentine inlet for a free-stream Mach number of 0.1. The key effect of boundary layer ingestion is the creation of streamwise vorticity which is ingested into the inlet, resulting in co- and counter-rotating streamwise vortices in the inlet. The fan sound power level increases by 38 dB due to this distortion, while the vortex whose circulation is in the same direction as the fan rotation enhances the sound power attenuation within the inlet duct such that the far-field overall sound pressure levels are increased by only 7 dB on average. The far-field spectra are altered in the following manner due to inlet distortion: (1) tones at up to 3 times the blade-passing frequency are amplified; and (2) tones above one-half of the blade-passing frequency are attenuated and appear to be cut-off. To quantify the effects of serpentine inlet duct geometry on the generation and propagation of multiple-pure-tone noise, a parametric study of inlets is conducted. The conclusions are that (1) the ingestion of streamwise vorticity alters multiple-pure-tone noise more than changes in inlet area ratio or offset ratio do; and (2) changes in the far-field spectra relative to the conventional inlet results are only weakly affected by the duct geometry changes investigated and are instead predominantly caused by flow non-uniformities. A response-surface correlation for the effects of inlet geometry on far-field noise is also developed.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2011.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 195-200).
 
Date issued
2011
URI
http://hdl.handle.net/1721.1/68404
Department
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics
Publisher
Massachusetts Institute of Technology
Keywords
Aeronautics and Astronautics.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.