MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Learning and the language of thought

Author(s)
Piantadosi, Steven Thomas
Thumbnail
DownloadFull printable version (18.12Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Brain and Cognitive Sciences.
Advisor
Edward Gibson.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
This thesis develops the hypothesis that key aspects of learning and development can be understood as rational statistical inferences over a compositionally structured representation system, a language of thought (LOT) (Fodor, 1975). In this setup, learners have access to a set of primitive functions and learning consists of composing these functions in order to created structured representations of complex concepts. We present an inductive statistical model over these representations that formalizes an optimal Bayesian trade-off between representational complexity and fit to the observed data. This approach is first applied to the case of number-word acquisition, for which statistical learning with a LOT can explain key developmental patterns and resolve philosophically troublesome aspects of previous developmental theories. Second, we show how these same formal tools can be applied to children's acquisition of quantifiers. The model explains how children may achieve adult competence with quantifiers' literal meanings and presuppositions, and predicts several of the most-studied errors children make while learning these words. Finally, we model adult patterns of generalization in a massive concept-learning experiment. These results provide evidence for LOT models over other approaches and provide quantitative evaluation of different particular LOTs.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Brain and Cognitive Sciences, 2011.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 179-191).
 
Date issued
2011
URI
http://hdl.handle.net/1721.1/68423
Department
Massachusetts Institute of Technology. Department of Brain and Cognitive Sciences
Publisher
Massachusetts Institute of Technology
Keywords
Brain and Cognitive Sciences.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.